P418
P418
Search examples

This is a set of search stories or terms that work with the current limited index. These are golden paths for sure but feel free to straw from the paths and try new things and let us know how they went.

source:BCO-DMO Score: 0.29039506149940125

<p>[2017-08-28]: The metadata for this dataset page is in progress.</p> <p>R code and associated data for&nbsp;a&nbsp;size-based, spatially explicit, stochastic demographic model to explore how different spatial configurations of marine reserve (MR) networks can affect the abundance&nbsp;and commercial yield of the green abalone (Haliotis&nbsp;fulgens), taking as a reference case the abalone fishery of Isla Natividad in Baja California Sur (Mexico).</p> <p>The model code is available in as .zip file: <a href="http://dmoserv3.whoi.edu/data_docs/CA_Current_MS_Abpop/code/Rossetto_etal_2015_CJFAS-1.0.zip">&nbsp;Rossetto_etal_2015_CJFAS-1.0.zip</a> containing R-files. These files are also available in the following GitHub repository: <a href="https://github.com/BCODMO/Rossetto_etal_2015_CJFAS/tree/1.0">Rossetto_etal_2015_CJFAS</a> (release 1.0).</p> <p>The model and results were described in the following publication:</p> <p>Rossetto, M., Micheli, F., Saenz-Arroyo, A., Montes, J. A. E., &amp; De Leo, G. A. (2015). No-take marine reserves can enhance population persistence and support the fishery of abalone. Canadian Journal of Fisheries and Aquatic Sciences, 72(10), 1503-1517.&nbsp;https://doi.org/10.1139/cjfas-2013-0623</p>

source:BCO-DMO Score: 0.28724854071102063

<p>Porites coral calcification responses to declining Ωar in a CO2 manipulation experiment in Palau versus the calcification responses observed in ten other studies of massive Porites corals.</p> <p>These data were originally published in figure 6 of:<br /> H.C. Barkley, A.L. Cohen, D.C. McCorkle, Y. Golbuu. Mechanisms and thresholds for pH tolerance in Palau corals. Journal of Experimental Marine Biology and Ecology, 489, 7-14 (2017). doi:<a href="http://dx.doi.org/10.1016/j.jembe.2017.01.003" target="_blank">10.1016/j.jembe.2017.01.003</a></p>

source:BCO-DMO Score: 0.2861760130482231

No description available

source:BCO-DMO Score: 0.2845091048560823

No description available

source:BCO-DMO Score: 0.27670952716955827

No description available

source:BCO-DMO Score: 0.27577215426072144

<p>Data from reciprocal transplant experiments on Palau Porites coral.</p> <p>These data were originally published in figures 4 and 5 of:<br /> H.C. Barkley, A.L. Cohen, D.C. McCorkle, Y. Golbuu. Mechanisms and thresholds for pH tolerance in Palau corals. Journal of Experimental Marine Biology and Ecology, 489, 7-14 (2017). doi:<a href="http://dx.doi.org/10.1016/j.jembe.2017.01.003" target="_blank">10.1016/j.jembe.2017.01.003</a></p>

source:BCO-DMO Score: 0.2750891206445685

No description available

source:BCO-DMO Score: 0.2686521497495694

No description available

source:BCO-DMO Score: 0.2650891591052608

<p>Abiotic TEP Formation - TA Perturbation</p> <p>Results form a series of controlled laboratory experiments investigating the effect of altered carbonate system chemistry on the abiotic formation of Transparent Exopolymer Particles (TEP).</p> <p><strong>Related Files: </strong><a href="http://bcodata.whoi.edu/Ocean_Acidification_and_Aggregation/Series1_The_abiotic_formation_of_TEP_under_different_ocean_acidification_scenarios_science.pdf">Passow U (2012) The Abiotic Formation of TEP under Ocean Acidification Scenarios. Marine Chemistry 128-129:72-80</a></p>

source:BCO-DMO Score: 0.263720197774566

<p>Average coral and algae cover, coral richness, and coral diversity from 8 coral reef sites in Palau.</p> <p>For more information, see main article and supporting information (including figures and tables) from:<br /> Barkley, H.C., A.L. Cohen, Y. Golbuu, V.R. Starczak, T.M. DeCarlo, K.E.F. Shamberger. 2015. Changes in coral reef communities across a natural gradient in seawater pH. <em>Science Advances</em>, 1, e1500328. doi:<a href="http://dx.doi.org/10.1126/sciadv.1500328" target="_blank">10.1126/sciadv.1500328 </a></p> <p>DeCarlo, T.M., A.L. Cohen, H.C. Barkley, Q. Cobban, C. Young, C., K.E.F. Shamberger, R.E. Brainard, Y. Golbuu. 2015. Coral macrobioerosion is accelerated by ocean acidification and nutrients. <em>Geology</em>, 43, 7-10. doi:<a href="http://dx.doi.org/10.1130/G36147.1" target="_blank">10.1130/G36147.1 </a></p> <p>Shamberger, K. E. F., A. L. Cohen, Y. Golbuu, D. C. McCorkle, S. J. Lentz, and H. C. Barkley. 2014. Diverse coral communities in naturally acidified waters of a Western Pacific Reef, Geophys. Res. Lett., 41. DOI: <a href="http://dx.doi.org/10.1002/2013GL058489" target="_blank">10.1002/2013GL058489</a>.</p>

source:BCO-DMO Score: 0.2636435615008311

<p>Seawater carbonate chemistry is reported from samples collected at 13 different coral reef sites in Palau from September 2011 to November 2013.</p> <p>For more information, see main article and supporting information (including figures and tables) from:<br /> Barkley, H.C., A.L. Cohen, Y. Golbuu, V.R. Starczak, T.M. DeCarlo, K.E.F. Shamberger. 2015. Changes in coral reef communities across a natural gradient in seawater pH. <em>Science Advances</em>, 1, e1500328. doi:<a href="http://dx.doi.org/10.1126/sciadv.1500328" target="_blank">10.1126/sciadv.1500328 </a></p> <p>DeCarlo, T.M., A.L. Cohen, H.C. Barkley, Q. Cobban, C. Young, C., K.E.F. Shamberger, R.E. Brainard, Y. Golbuu. 2015. Coral macrobioerosion is accelerated by ocean acidification and nutrients. <em>Geology</em>, 43, 7-10. doi:<a href="http://dx.doi.org/10.1130/G36147.1" target="_blank">10.1130/G36147.1 </a></p> <p>Shamberger, K. E. F., A. L. Cohen, Y. Golbuu, D. C. McCorkle, S. J. Lentz, and H. C. Barkley. 2014. Diverse coral communities in naturally acidified waters of a Western Pacific Reef, Geophys. Res. Lett., 41. DOI: <a href="http://dx.doi.org/10.1002/2013GL058489" target="_blank">10.1002/2013GL058489</a>.</p>

source:BCO-DMO Score: 0.2628497176188702

No description available

source:BCO-DMO Score: 0.2613179312319177

No description available

source:BCO-DMO Score: 0.25886880564720716

No description available

source:BCO-DMO Score: 0.2585209430904353

No description available

source:BCO-DMO Score: 0.25759553854165995

<p>Series 4: Aggregation of Thalassiosira weissflogii as a function of pCO2, temperature and bacteria: Acclimatisation Phase - Cell Counts</p> <p><strong>Related Reference:</strong><br /> <a href="http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0112379" target="_blank">Aggregation and Sedimentation of Thalassiosira weissflogii (diatom) in a Warmer and More Acidified Future Ocean</a></p>

source:BCO-DMO Score: 0.25646280055352416

No description available

source:BCO-DMO Score: 0.25335674117545426

No description available

source:BCO-DMO Score: 0.25156035602016824

<p>Gene expression data from nitrate-limited chemostat cultures of the diatom <em>Thalaisiosira pseudonana</em> subjected to CO2 concentrations ranging from 300-800 ppm.</p> <p>Access to the dataset is restricted until the manuscript publication of our manuscript (currently under review for Nature Climate Change). Upon acceptance of the manuscript, data will be submitted to NCBI and the accession numbers will be provided here.</p>

source:BCO-DMO Score: 0.25004019828554647

<p>Series 4: Aggregation of Thalassiosira weissflogii as a function of pCO2, temperature and bacteria: Aggregation Phase - Sinking Velocity</p> <p><strong>Related Reference:</strong><br /> <a href="http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0112379" target="_blank">Aggregation and Sedimentation of Thalassiosira weissflogii (diatom) in a Warmer and More Acidified Future Ocean</a></p>